A Convergence Theorem for Riemannian Submanifolds
نویسندگان
چکیده
In this paper we study the convergence of Riemannian submanifolds. In particular, we prove that any sequence of closed submanifolds with bounded normal curvature and volume in a closed Riemannian manifold subconverge to a closed submanifold in the C1 ,Q topology. We also obtain some applications to irreducible homogeneous manifolds and pseudo-holomorphic curves in symplectic manifolds.
منابع مشابه
Umbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms
We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...
متن کاملSubmanifolds with Parallel Mean Curvature Vector in Pinched Riemannian Manifolds
In this paper, we prove a generalized integral inequality for submanifolds with parallel mean curvature vector in an arbitrary Riemannian manifold, and from which we obtain a pinching theorem for compact oriented submanifolds with parallel mean curvature vector in a complete simply connected pinched Riemannian manifold, which generalizes the results obtained by Alencar-do Carmo and Hong-Wei Xu.
متن کاملA Convexity Theorem For Isoparametric Submanifolds
The main objective of this paper is to discuss a convexity theorem for a certain class of Riemannian manifolds, so-called isoparametric submanifolds, and how this relates to other convexity theorems. In the introduction we will present the convexity theorems. In Section 2 we will describe the geometry of isoparametric submanifolds and in Section 3 we will relate this to the geometries of the ot...
متن کاملA Note on the Morse Index Theorem for Geodesics between Submanifolds in Semi-riemannian Geometry
The computation of the index of the Hessian of the action functional in semi-Riemannian geometry at geodesics with two variable endpoints is reduced to the case of a fixed final endpoint. Using this observation, we give an elementary proof of the Morse Index Theorem for Riemannian geodesics with two variable endpoints, in the spirit of the original Morse’s proof. This approach reduces substanti...
متن کاملIdeal Slant Submanifolds in Complex Space Forms
Roughly speaking, an ideal immersion of a Riemannian manifold into a space form is an isometric immersion which produces the least possible amount of tension from the ambient space at each point of the submanifold. Recently, B.-Y. Chen studied Lagrangian submanifolds in complex space forms which are ideal. He proved that such submanifolds are minimal. He also classified ideal Lagrangian submani...
متن کامل